El estrés oxidativo en la práctica de enfermería

Rocío Castillo Andrade, Raquel Del valle Salazar-Lugo

Resumen

El personal de enfermería está expuesto a una gran carga de trabajo físico y psicosocial; éstos son factores estresantes que inciden directamente en la salud de este personal. Estudios demuestran que el estrés ocupacional en este personal incrementa el estrés oxidativo y así, la generación de especies reactivas de oxígeno lo cual puede conducir al envejecimiento prematuro, a las enfermedades neurodegenerativas y al cáncer. El manejo del estrés laboral en el trabajo de enfermería es un factor importante para disminuir la sobrecarga de estrés oxidativo que involucra esta profesión. La capacidad de resiliencia debe ser manejado como un aspecto robusto para poder sobrellevar el estrés oxidativo, con mínimos costos en la salud. Igualmente, cambios en el estilo de vida, como una alimentación saludable que involucre vegetales y frutas y la práctica deportiva también son necesarios para disminuir la carga oxidativa y mejorar la calidad de vida del personal de enfermería.


Palabras clave

Estrés oxidativo; Enfermería; Resiliencia; Especies reactivas; Burnout; Radicales libres; Antioxidantes

Texto completo:

PDF (944,34 kB) Estadísticas

Referencias

Abdul Rahman H, Abdul-Mumin K, Naing L.Psychosocial Work Stressors, Work Fatigue, and Musculoskeletal Disorders: Comparison between Emergency and Critical Care Nurses in Brunei Public Hospitals. Asian Nurs Res (Korean Soc Nurs Sci). 2017; 11(1): 13-18. https://doi.org/10.1016/j.anr.2017.01.003

Aburn G, Gott M, Hoare K. What is resilience? An Integrative Review of the empirical literature. J Adv Nurs. 2016; 72(5): 980-1000. https://doi.org/10.1111/jan.12888

Adeoye O, Olawumi J, Opeyemi A, Christiania O. Review on the role of glutathione on oxidative stress and infertility. JBRA Assist Reprod. 2018; 22(1): 61-66.

Allen JF. Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. PNAS 2015; 112(33): 10231-238. https://doi.org/10.1073/pnas.1500012112

Anraku M, Chuang VT, Maruyama T, Otagiri M. Redox properties of serum albumin. Biochim Biophys Acta. 2013; 1830(12): 5465-72. https://doi.org/10.1016/j.bbagen.2013.04.036

Assies J, Mocking RJT, Lok A, Ruh_e HG, Pouwer F, Schene AH. Effects of oxidative stress on fatty acid and one-carbon metabolism in psychiatric and cardiovascular disease comorbidity. Acta Psychiatr Scand 2014; 130: 163-180. https://doi.org/10.1111/acps.12265

Bala A, Mondal C, Haldar PK, Khandelwal B. Oxidative stress in inflammatory cells of patient with rheumatoid arthritis: clinical efficacy of dietary antioxidants. Inflammopharmacol. 2017; 25(6): 595-607. https://doi.org/10.1007/s10787-017-0397-1

Barahona A, Guerron A, Tixicuro E, R Salazar-Lugo, Ácido úrico, bilirrubina y tioles como indicadores del estado oxidativo en adultos evaluados nutricionalmente. Saber. 2017; 29 (2): 1-10.

Bartz RR, Piantadosii CA. Clinical review: Oxygen as a signaling molecule. Critical Care 2010; 14: 234-43. https://doi.org/10.1186/cc9185

Bellanti F, Romano AD, Lo Buglio A, Castriotta V, Guglielmi G, Greco A, Serviddio G et al. Oxidative stress is increased in sarcopenia and associated with cardiovascular disease risk in sarcopenic obesity. Maturitas. 2018; 109: 6-12. https://doi.org/10.1016/j.maturitas.2017.12.002

Benhar M. Roles of mammalian glutathione peroxidase and thioredoxin reductase enzymes in the cellular response to nitrosative stress. Free Radic Biol Med. 2018. https://doi.org/10.1016/j.freeradbiomed.2018.01.028

Beyfuss K, Hood DA. A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Rep. 2018; 23(1): 100-117. https://doi.org/10.1080/13510002.2017.1416773

Bolisetty S, Jaimes E. Mitochondria and Reactive Oxygen Species: Physiology and Pathophysiology Int. J. Mol. Sci. 2013; 14: 6306-44.

Campese VM, Ye S, Zhong H, Yanamadala V, Ye Z, Chiu J. Reactive oxygen species stimulate central and peripheral sympathetic nervous system activity. Am J Physiol Heart Circ Physiol 2004; 287: H695–H703. https://doi.org/10.1152/ajpheart.00619.2003

Cao L, Tian H, Zhang Q, Zhu X, Zhan Y, Su J, Xu T et al. Effect of occupational stress on oxidation/antioxidant capacity in nurses. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2014; 32(2): 100-3.

Cárdenas-Rodríguez N, Pedraza-Chaverri J. Especies reactivas de oxígeno y sistemas antioxidantes: aspectos básicos Edu Quím 2006; 17(2): 164-173.

Casado A, Castellanos A, López-Fernández ME, Ruíz R, Aroca CG, Noriega F. Relationship between oxidative and occupational stress and aging in nurses of an intensive care unit. Age (Dordr). 2008; 30(4): 229-36. https://doi.org/10.1007/s11357-008-9052-5

Cassagnes LE, Chhour M, Perio P, Sudor J, Gayon R, Ferry G et al. Oxidative stress and neurodegeneration: the possible contribution of quinone reductase 2. Free Radic Biol Med. 2018; S0891-5849(18): 30105-9.

Çelik S, Taşdemir N, Kurt A, İlgezdi E, Kubalas Ö. Fatigue in Intensive Care Nurses and Related Factors. Int J Occup Environ Med. 2017; 8(4): 199-206. https://doi.org/10.15171/ijoem.2017.1137

Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018; 15: 490-503. https://doi.org/10.1016/j.redox.2018.01.008

Čolak E, Žorić L, Radosavljević A, Ignjatović S. The Association of Serum Iron-Binding Proteins and the Antioxidant Parameter Levels in Age-Related Macular Degeneration. Curr Eye Res. 2018; 15: 1-7. https://doi.org/10.1080/02713683.2018.1437452

Delgado C1, Upton D, Ranse K, Furness T, Foster K. Nurses' resilience and the emotional labour of nursing work: An integrative review of empirical literature. Int J Nurs Stud. 2017; 70: 71-88. https://doi.org/10.1016/j.ijnurstu.2017.02.008

Dröge W. Free Radicals in the Physiological Control of Cell Function. Physiol Rev 2002; 82(1): 47-95. https://doi.org/10.1152/physrev.00018.2001

Duhoux A, Menear M, Charron M, Lavoie-Tremblay M, Alderson M, Interventions to promote or improve the mental health of primary care nurses: a systematic review. J Nurs Manag. 2017; 25(8): 597-607. https://doi.org/10.1111/jonm.12511

de Bari L, Favia M, Bobba A, Lassandro R, Guerra L, Atlante A. Aberrant GSH reductase and NOX activities concur with defective CFTR to pro-oxidative imbalance in cystic fibrosis airways. J Bioenerg Biomembr. 2018. https://doi.org/10.1007/s10863-018-9748-x

de Paiva LC, Canário ACG, de Paiva China ELC, Gonçalves AK. Burnout syndrome in health-care professionals in a university hospital. Clinics (Sao Paulo). 2017; 72(5): 305-09. https://doi.org/10.6061/clinics/2017(05)08

Eman AS, Ebrahem SM. Psychosocial work environment and oxidative stress among nurses. J Occup Health 2018; 60: 182-191. https://doi.org/10.1539/joh.17-0186-OA

Fali T, Vallet H, Sauce D. Impact of stress on aged immune system compartments: Overview from fundamental to clinical data. Exp Gerontol. 2018; S0531-5565(17): 30782-9.

Falkowski PG, Godfrey LV. Electrons, life and the evolution of Earth’s oxygen cycle. Phil. Trans. R. Soc. B. 2008; 363: 2705-2716. https://doi.org/10.1098/rstb.2008.0054

Fei Y, Sun L, Yuan C, Jiang M, Lou Q, Xu Y. CFTR ameliorates high glucose-induced oxidative stress and inflammation by mediating the NF-κB and MAPK signaling pathways in endothelial cells. Int J Mol Med. 2018. https://doi.org/10.3892/ijmm.2018.3547

Fumis RRL, Junqueira GA, de Fátima NA, Vieira JM. Moral distress and its contribution to the development of burnout syndrome among critical care providers. Ann Intensive Care. 2017; 7(1): 71-80. https://doi.org/10.1186/s13613-017-0293-2

Gómez-Oliván LM, Miranda-Mendoza GD, Cabrera-Galeana PA, Galar-Martínez M, Islas-Flores H, Sanjuan-Reyes N, et al. Oxidative stress induced in nurses by exposure to preparation and handling of antineoplastic drugs in Mexican hospitals: a multicentric study. Oxid Med Cell Longev. 2014. https://doi.org/10.1155/2014/858604

Gopoju R, Panangipalli S, Kotamraju S. Metformin treatment prevents SREBP2-mediated cholesterol uptake and improves lipid homeostasis during oxidative stress-induced atherosclerosis. Free Radic Biol Med. 2018; 118: 85-97. https://doi.org/10.1016/j.freeradbiomed.2018.02.031

Gromadzińska J, Peplonska B, Sobala W, Reszka E, Wasowicz W, Bukowska A et al. Relationship between intensity of night shift work and antioxidant status in blood of nurses. Int Arch Occup Environ Health. 2013; 86(8): 923-30. https://doi.org/10.1007/s00420-012-0828-7

Hennig P, Garstkiewicz M, Grossi S, Di Filippo M, French LE, Beer HD. The Crosstalk between Nrf2 and Inflammasomes. Int J Mol Sci. 2018; 19(2). https://doi.org/10.3390/ijms19020562

Hersch RK, Cook RF, Deitz DK, Kaplan S, Hughes D, Friesen MA et al. Reducing nurses' stress: A randomized controlled trial of a web-based stress management program for nurses Appl Nurs Res. 2016; 32: 18-25. https://doi.org/10.1016/j.apnr.2016.04.003

Hulsegge G1, Gupta N2, Proper KI3, van Lobenstein N4, IJzelenberg W5, Hallman DM6, Holtermann A7, van der Beek AJ4. Shift work is associated with reduced heart rate variability among men but not women. Int J Cardiol. 2018; 258: 109-114. https://doi.org/10.1016/j.ijcard.2018.01.089

Ikwegbue PC, Masamba P, Oyinloye BE, Kappo AP. Roles of Heat Shock Proteins in Apoptosis, Oxidative Stress, Human Inflammatory Diseases, and Cancer. Pharmaceuticals (Basel). 2017; 11(1). https://doi.org/10.3390/ph11010002

Ishihara I, Nakano M, Ikushima M, Hara Y, Yoshimine T, Haraga M et al. Effect of work conditions and work environments on the formation of 8-OH-dG in nurses and non-nurse female workers. J UOEH. 2008; 30(3): 293-308. https://doi.org/10.7888/juoeh.30.293

Jongin L, Tae-Won J, In-Ah Y, Jungsun P, Jaechul S. The relationship between night work and breast cancer.Ann Occup Environ Med. 2018; 30: 11-20. https://doi.org/10.1186/s40557-018-0221-4

Kang DH. Oxidative stress, DNA damage, and breast cancer. AACN Clin Issues. 2002; 13(4): 540-9. https://doi.org/10.1097/00044067-200211000-00007

Klein SD, Bucher HU, Hendriks MJ, Baumann-Hölzle R, Streuli JC, Berger TM et al. Sources of distress for physicians and nurses working in Swiss neonatal intensive care units. Swiss Med Wkly. 2017; 147: w14477-82.

Kumari S, Badana AK, Malla R. Reactive Oxygen Species: A Key Constituent in Cancer Survival. Biomark Insights. 2018. https://doi.org/10.1177/1177271918755391

Lee J, Ma K, Moulik M, Yechoor V. Untimely oxidative stress in β-cells leads to diabetes - Role of circadian clock in β-cell function. Free Radic Biol Med. 2018; pii: S0891-5849(18): 30077-7.

Liu JJ, Green P, Mann J, Rapoport SI, Sublette E. Pathways of Polyunsaturated Fatty Acid Utilization: Implications for Brain Function in Neuropsychiatric Health and Disease. Brain Res. 2015; 0: 220–246. https://doi.org/10.1016/j.brainres.2014.11.059

Machado DA, Figueiredo NMA, Velasques LS, Bento CAM, Machado WCA, Vianna LAM. Cognitive changes in nurses working in intensive care units. Rev Bras Enferm. 2018; 71(1): 73-79. https://doi.org/10.1590/0034-7167-2016-0513

Mahboob M, Rahman MF, Rekhadevi PV, Sailaja N, Balasubramanyam A, Prabhakar PV et al. Monitoring of oxidative stress in nurses occupationally exposed to antineoplastic drugs. Toxicol Int. 2012; 19(1): 20-4.

Mansuri MS, Jadeja SD, Singh M, Laddha NC, Dwivedi M, Begum R. The catalase gene promoter and 5'-untranslated region variants lead to altered gene expression and enzyme activity in vitiligo. Br J Dermatol. 2017; 177(6): 1590-1600. https://doi.org/10.1111/bjd.15681

McBean GJ. Cysteine, Glutathione, and Thiol Redox Balance in Astrocytes. Antioxid. 2017; 6(3): 62-672. https://doi.org/10.3390/antiox6030062

Merati G, Pasquali P, Vergani C, Landi L. Antioxidant activity of ubiquinone-3 in human low density lipoprotein. Free Radic Res Commun. 1992; 16(1): 11-7. https://doi.org/10.3109/10715769209049154

Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 2009; 6(7): e1000097. https://doi.org/10.1371/journal.pmed.1000097

Morris G, Anderson G, Maes M. Hypothalamic-Pituitary-Adrenal Hypofunction in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS) as a Consequence of Activated Immune-Inflammatory and Oxidative and Nitrosative Pathways. Mol Neurobiol. 2017; 54(9): 6806-19. https://doi.org/10.1007/s12035-016-0170-2

Murlikiewicz Ł, Grzegorczyk K, Lewicka M, Buczyński A, Rutkowski M. Oxidative stress in colonic adenocarcinoma: An impact on the body's antioxidative status and oxidative protein damage. Adv Clin Exp Med. 2018; 27(1): 77-82. https://doi.org/10.17219/acem/67819

Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, Razo LM, Quintanilla-Vega B et al. Oxidative Stress, Redox Signaling, and Autophagy:Cell Death Versus Survival. Antioxid Redox Sign, 2014. https://doi.org/10.1089/ars.2014.5837

Panieri E, Santoro MM. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death and Disease. 2016; 7e2253-63. https://doi.org/10.1038/cddis.2016.105

Panth N, Paudel KR, Parajuli K. Reactive Oxygen Species: A Key Hallmark of Cardiovascular Disease. Adv Med 2016. https://doi.org/10.1155/2016/9152732

Patche J, Girard D, Catan A, Boyer F, Dobi A, Planesse C et al. Diabetes-induced hepatic oxidative stress: a new pathogenic role for glycated albumin. Free Radic Biol Med. 2017; 102: 133-148. https://doi.org/10.1016/j.freeradbiomed.2016.11.026

Pouvreau C, Dayre A, Butkowski EG, de Jong B, Jelinek HF. Inflammation and oxidative stress markers in diabetes and hypertension. J Inflamm Res. 2018; 11: 61-68. https://doi.org/10.2147/JIR.S148911

Rivera JC, Dabouz R, Noueihed B, Omri S, Tahiri H, Chemtob S. Ischemic Retinopathies: Oxidative Stress and Inflammation. Oxid Med Cell Longev. 2017. https://doi.org/10.1155/2017/3940241

Roche M, Rondeau P, Singh N R. Tarnus E. Bourdon E. the antioxidant properties of serum albumin. FEBS Letters. 2008; 582: 1783–87. https://doi.org/10.1016/j.febslet.2008.04.057

Rozga J, Piątek T, Małkowski P. Reactive Oxygen Species: A Key Constituent in Cancer Survive. Ann Transplant. 2013; 18: 205-17.

Salazar-Lugo R, Barahona A, Santamaria M, Salas H, Oleas M, Bermeo B. Marcadores de estrés oxidativo y su relación con el estado nutricional en adultos, Ecuador. ALAN. 2014; 64(4): 264-270.

Schiavone S, Jaquet V, Trabace L, Krause KH. Severe Life Stress and Oxidative Stress in the Brain: From Animal Models to Human Pathology. Antioxid Redox Signal 2013; 18: 12-21. https://doi.org/10.1089/ars.2012.4720

Sedlank T, Zinder, S. Bilirrubin benefits: celular protection by a biliverdin reductase antioxisant cycle. Pediatrics 2004; 113: 1776-82. https://doi.org/10.1542/peds.113.6.1776

Sheng Y, Abreu A, Cabelli D, Maroney MJ, Miller AF, Teixeira M et al. Superoxide Dismutases and Superoxide Reductases Chem. Rev. 2014; 114: 3854−3918.

Sies H, Berndt C, Jones DP. Oxidative Stress. Annu Rev Biochem. 2017; 86: 715-748. https://doi.org/10.1146/annurev-biochem-061516-045037

Sorce S and Krause K-H. NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 2009; 11: 2481–2504. https://doi.org/10.1089/ars.2009.2578

Suoki, A, Cano C, Mengual E, Torres D, Almarza J, León L et al. 2007. Marcadores biológicos de estrés oxidativo. Arch Venez Farmacoly Terapeut, 26: 93-97.

Taverne YJ, Merkus D, Bogers AJ, Halliwell B, Duncker DJ, Lyons TW. Reactive Oxygen Species: Radical Factors in the Evolution of Animal Life: A molecular timescale from Earth's earliest history to the rise of complex life. Bioessays. 2018; 40(3). https://doi.org/10.1002/bies.201700158

Thomas DC, Clare S, Sowerby JM, Pardo M, Juss JK, Goulding DA, et al. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. J Exp Med. 2017; 214(4): 1111-28. https://doi.org/10.1084/jem.20161382

Torquati L, Mielke G, Brown WJ, Kolbe-Alexander T. Shift work and the risk of cardiovascular disease. A systematic review and meta-analysis including dose-response relationship. Scand J Work Environ Health. 2017. https://doi.org/10.5271/sjweh.3700

Ulas T, Buyukhatipoglu H, Kirhan I, Dal MS, Ulas S, Demir ME et al. Evaluation of oxidative stress parameters and metabolic activities of nurse’s working day and night shifts. Rev Esc Enferm USP. 2013; 47(2): 471-6. https://doi.org/10.1590/S0080-62342013000200028

Ulas T1, Buyukhatipoglu H, Kirhan I, Dal MS, Eren MA, Hazar A et al. The effect of day and night shifts on oxidative stress and anxiety symptoms of the nurses. Eur Rev Med Pharmacol Sci. 2012; 16(5): 594-9.

Urrútia G, Bonfill X. Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Med Clin (Barc). 2010; 135: 507-11. https://doi.org/10.1016/j.medcli.2010.01.015

Van Raamsdonk JM, Vega IE, Brundin P. Oxidative stress in neurodegenerative disease: causation or association? Oncotarget. 2017; 8(7): 10777-778. https://doi.org/10.18632/oncotarget.14650

Vasconcelos EM, Martino MMF, França SPS. Burnout and depressive symptoms in intensive care nurses: relationship analysis. Rev Bras Enferm. 2018; 71(1): 135-141. https://doi.org/10.1590/0034-7167-2016-0019

Wang F1, Yeung KL, Chan WC, Kwok CC, Leung SL, Wu C, Chan EY, Yu IT, Yang XR, Tse LA. A meta-analysis on dose-response relationship between night shift work and the risk of breast cancer. Ann Oncol. 2013; 24(11): 2724-32. https://doi.org/10.1093/annonc/mdt283

Weigert A, von Knethen A, Fuhrmann D, Dehne N, Brüne B. Redox-signals and macrophage biology (for the upcoming issue of molecular aspects of medicine on signaling by reactive oxygen species. Mol Aspects Med. 2018; S0098-2997(17): 30104-8.

Ye ZW, Zhang J, Townsend DM, Tew KD. Oxidative Stress, Redox Regulation and Diseases of Cellular Differentiation Biochim Biophys Acta. 2015; 1850(8): 1607-21.

Zhang QL, Wang W, Jiang Y, A-Tuya, Dongmei, Li LL et al. GRGM-13 comprising 13 plant and animal products, inhibited oxidative stress induced apoptosis in retinal ganglion cells by inhibiting P2RX7/p38 MAPK signaling pathway. Biomed Pharmacother. 2018; 101: 494-500. https://doi.org/10.1016/j.biopha.2018.02.107




DOI: https://doi.org/10.14198/recien.2018.15.05





Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.